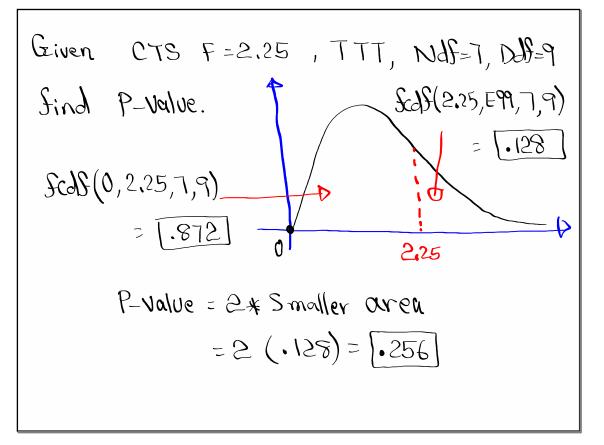


Comparing Two Population Standard deviations
to determine whether or not they are equal:
Ho:
$$G_1 = G_2$$

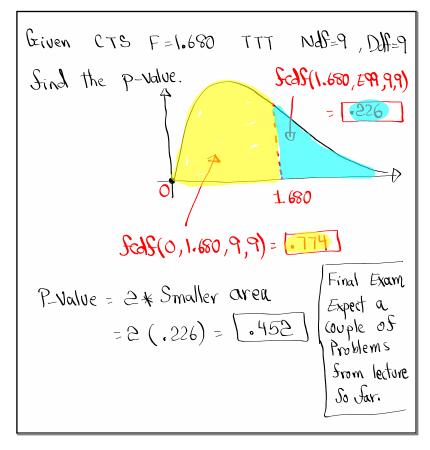
H1: $G_1 \neq G_2$ TTT
 T_1
 T_1
 T_2
Using P-Value Method only: S_1
 S_2
 CTS $F = \frac{S_1^2}{S_2^2}$
We can use d-SampFTest to find
 $CTS \notin P-Value$.
To Verify P-Value, we find the area on
each Side of CTS F by using TI Command
fcdf (L, U, Ndf, Ddf), then multiply
the Smaller area by 2. $Ddf = n_2 - 1$
We proceed with testing Chart, and
make final Conclusion.

Consider the chart below: Overify that S1>S2. Sample 11 Sample 2 n,=12 N2=8 NdS=n1-1=11 Daf=n2-1=7 3 Sind the P-Value Sor TTT. fab(L, U, Ndf, Ddf)= 14 Scaff(2.56, E99, 11, 7)=.111 ~>> 0 2.56 P-Value = 2* Smaller area -2(.111) Scdf (0, 2.56, 11, 7)= .889 = . 222 Verify these answers using 2-SampFTest STATI (TESTS) [2-Samp F Test Stats inst: CTS F= 2.56 Sz=5 112:8 M1=12 51:8 P-Value P=.222 Calculate $q_1 \neq q_2$

Consider the chart below:
Sample 1 | Sample 2 | Verify that
$$S_{1} > S_{2}$$
,
 $n_{1} = 8$ $n_{2} = 10$
 $S_{1} = 12$ $S_{2} = 8$ a) use $\alpha = .02$ to test the
 $NdS = n_{2} - 1 = 7$ claim that $\sigma_{1} = \sigma_{2}$.
 $DdS = n_{2} - 1 = 7$ claim that $\sigma_{1} = \sigma_{2}$.
 $DdS = n_{2} - 1 = 7$ claim that $\sigma_{1} = \sigma_{2}$.
 $DdS = n_{2} - 1 = 7$ claim $T_{1} = \sigma_{2}$.
 $DdS = n_{2} - 1 = 7$ claim $T_{1} = \sigma_{2}$.
 $DdS = n_{2} - 1 = 7$ claim $T_{1} = \sigma_{2}$.
 $DdS = n_{2} - 1 = 7$ claim $T_{1} = \sigma_{2}$.
 $DdS = n_{2} - 1 = 7$ claim $T_{2} = \sigma_{2}$.
 $P-Value P = .256$ VV
 $2-Samp F Test$
 $P-Value A = 0$ $\sigma_{1} = 8$
 $.256 \cdot 02$ $S_{1} = 12$
 $H_{0} Valid$, H_{1} invalid $\sigma_{2} = 8$
 $Valid$ claim $m_{2} = 10$
 $Fail - To - Reject the claim $\sigma_{1} = \sigma_{2}$ TTT$



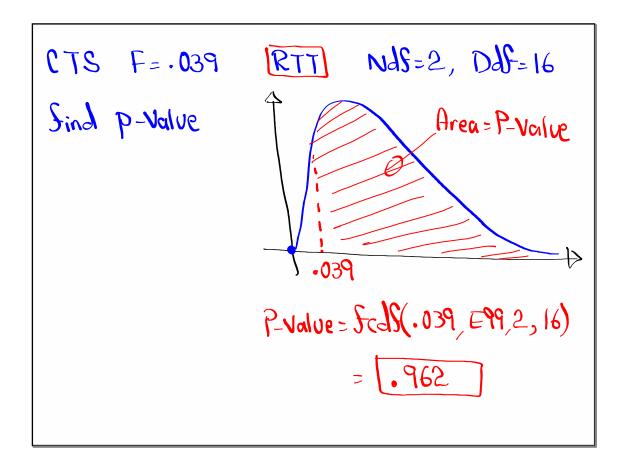
I randomly selected 10 exams from female
Students and 10 exams from male students.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
a difference between two pop. Standard. du. Males Females
Ho: $\sigma_{1} = \sigma_{2}$ H $_{1} : \sigma_{1} \neq \sigma_{2}$ claim, TTT $\eta_{1} = 10$ $\eta_{2} = 10$ $s_{1} = 10$ $s_{2} = 10.8$ $s_{1} = 14.0$ $s_{2} = 10.8$
$S_{1} > S_{2} = 1.680$
P-value P=.451 W/ P-value X 2-SampFTest 451 .1 Ho valid, H1 invalid
Invalid claim Reject the claim



Comparing at least 3 pop. means:
Ho:
$$M_1 = M_2 = M_3 = \cdots = M_K$$

H₁: At least one mean is different. RTT
K -> # of groups NdF=K-1
n-> Total Sample Size Ddf=n-K
To find
CTS F => STAT TESTS ANOVA(L1,L2,L3,
P-Value P
To Confirm
P-Value => fedf (CTS, E99, Ndf, Ddf)
ANOVA => Analysis of Variance

I randomly selected exams from 3 different Colleges! West LA | LA city ELAC 72 85 93 88 95 65 83 100 70 90 95 75 55 100 881 60 85 100 ٦5 Ndf=K-1=2 K=3, n=7+5+7=19 Daf=n-K=16 Use $\alpha = \cdot 1$ to test the claim that all Pop. means are equal. Ho: Mi= M2= M3 claim H1: At least one mean is different RTT ELAC ->LI, WESTLA ->L2, LA City ->L3 STAT (TESTS) (ANOVA)(L1, L2, L3 Enter P-value x C Ho valid .962 .1 H1 invalid CTS F= . 039 P-Value P= .962. Valid claim Fail-to-Reject the claim



I randomly selected students from 4 different Schools. Here are their ages: UCLA SMC PCC ELAC 1 98 24 32 23 21 30 90 19 34 25 45 25 20 33 37 25 32 48 50 30 a0 28 30 18 35 Ndf=K-1=3 n=7+5+6+8=26 K=4 Ddf=n-K=22 No at + use .05 Test the claim that not all pop. means are the Same. $H_0: M_1 = M_2 = M_3 = M_4$ H1: At least one mean is different claim ELAC-PL1, PCC-PL2, SMC-PL3, UCLA-PL4 ANOVA(11, 12, 13, 14) CTS F=1.492 P-value P= . 244 VVV P-value X PInvalid claim .244 .05 Reject the claim Ho Valid HI Invalid

CTS F=1.492 RTT Ndf=3, Ddf=22 find p-value. Expect a problem on ANOVA For the final exam. 1.492 P-Value = Area $= \int cdf(1.492, E99, 3, 22)$ = 1.244